

Mild steel process selection For XPR® and HyPerformance® HPR400® XD

Expected quality/speed results in inches per minute (ipm)

	XPR							HPR	
	0,/0,	0,/Air						0 ₂ /Air	
Thickness	2 2							2	
(inches)	30 A	50 A	80 A	130 A	170 A	220 A	300 A	400 A	
26 GA	215								-
24 GA	200								
22 GA	170								
20 GA	155								
18 GA	110								
16 GA	85								
14 GA	60								
12 GA	50	155	225]
1/8	43	148	217]
10 GA	40	145	180	240					
3/16	30	95	155	190	230]
1/4		70	110	150	200	240			
5/16		55	96	130	170	-			
3/8			75	110	140	150	180		
7/16			62	95	127	-	-		
1/2			55	80	115	125	155*	170	
9/16				70	97	125	140*	-	
5/8				60	80	110	130	150	
3/4				45	65	85	105	115	
7/8				32	55	75	90	100	
1				20	45	60	75	85	
1-1/8				18	37	50	65	-	
1-1/4				16	30	40	55	65	
1-3/8				12	25	35	47	-	
1-1/2				10	20+	30	40	48	* N2 115
1-9/16					17+	-	_	-	
1-5/8					17	25	35	-	+ Aryoi
1-3/4					14	20	30*	40	Our cut
1-7/8					12	15	25*	-	process
2					10	12	21*+	30	Hyperth
2-1/8					-	9	18*	-	optimize
2-1/4					-	8	17*	25	Uverall I This ont
2-3/8					6	7	15*	_	Thickne
2-1/2						6	14*	20	
2-5/8							12*	-	
2-3/4	1	1	1				10*	_	
2-7/8							8*	_	
3		1					7*	10	

sed as shield gas

n assist

tting systems offer a wide variety of options to meet your requirements.

herm Associates process engineers work to e a range of thicknesses to obtain the best balance of productivity and cut quality. timized range is called the Process Core esses (PCT).

Process category options and expected quality-speed results for ferrous (mild steel) processes

XPR category		gory			
	Number	Condition	Description	Quality	Speed
	1	Process Core Thickness (PCT)	 Best overall balance of productivity and cut quality The process is optimized for this thickness Virtually dross free 	Very good	Very good
	2	Thicker than PCT	 Good choice when edge quality is more important than speed Some low-speed dross 	Very good to excellent	Lower
	3	Thinner than PCT	 Good choice when speed is more important than cut edge quality Virtually dross free 	Lower	Higher
-	4	Edge start for most processes	 Edge start is required with the exception of argon assist processes Thick, low-speed dross is likely 	Good	Low
	5	Severance	 Maximum thickness for these processes Edge start required Cut speeds are very slow, in most cases expect less than 10 in/min Cut edge quality can be rough Significant dross Thick-metal cutting technologies can be necessary 	Very low	Very low

Pierce settings in the cut charts are based on standard-position torch angles (at a 90° angle to the workpiece)

Learn more at www.hypertherm.com

Hypertherm, XPR, HyPerformance, HPR, XD, and Shaping Possibility are trademarks of Hypertherm, Inc. and may be registered in the United States and/or other countries. All other trademarks are the property of their respective owners.

Please visit www.hypertherm.com/patents for more details about Hypertherm Associates patent numbers and types.

© 4/2023 Hypertherm, Inc. Revision 1

898150

As 100% Associate owners, we are all focused on delivering a superior customer experience. www.hyperthermassociates.com/ownership

Environmental stewardship is one of Hypertherm Associates' core values. www.hyperthermassociates.com/environment

100% Associate-owned

